Information Entropy Theory and Asset Valuation: A Literature Survey

Authors

  • Sana Gaied Chortane Institute of Higher Business Study of Sousse, University of Sousse, Tunisia, and Member of LA REMFiQ Laboratory, University of Sousse, Tunisia
  • Kamel Naoui University. Manouba, ESCT, LARIMRAF LR21ES29, Manouba University campus, 2010, Tunisia

DOI:

https://doi.org/10.55429/ijabf.v2i1.95

Keywords:

Information entropy theory, asset valuation, Capital Asset Pricing Model(CAPM), Diversification, Gaussian Distribution

Abstract

The purpose of this study is to review the empirical work applied to market efficiency, portfolio selection and asset valuation, focusing on the presentation of the comprehensive theoretical framework of Information Entropy Theory (IET). In addition, we examine how entropy addresses the shortcomings of traditional models for valuing financial assets, including the market efficiency hypothesis, the capital asset pricing model (CAPM), and the Black and Scholes option pricing model. We thoroughly reviewed the literature from 1948 to 2022 to achieve our objectives, including well-known asset pricing models and prominent research on information entropy theory. Our results show that portfolio managers are particularly attracted to valuations and strive to achieve maximum returns with minimal risk. The entropy-based portfolio selection model outperforms the standard model when return distributions are non-Gaussian, providing more comprehensive information about asset and distribution probabilities while emphasising the diversification principle. This distribution is then linked to the entropic interpretation of the no-arbitrage principle, especially when extreme fluctuations are considered, making it preferable to the Gaussian distribution for asset valuation. This study draws important conclusions from its extensive analysis. First, entropy better captures diversification effects than variance, as entropy measures diversification effects more generically than variance. Second, mutual information and conditional entropy provide reasonable estimates of systematic and specific risk in the linear equilibrium model. Third, entropy can be used to model non-linear dependencies in stock return time series, outperforming beta in predictability. Finally, information entropy theory is strengthened by empirical validation and alignment with financial views. Our findings enhance the understanding of market efficiency, portfolio selection and asset pricing for investors and decision-makers. Using Information Entropy Theory as a theoretical framework, this study sheds new light on its effectiveness in resolving some of the limitations in traditional asset valuation models, generating valuable insights into the theoretical framework of the theory.

Metrics

Metrics Loading ...

References

Ahn, K., Lee, D., Sohn, S., & Yang, B. (2019). Stock market uncertainty and economic fundamentals: an entropy-based approach. Quantitative Finance, 19(7), 1151–1163. https://doi.org/10.1080/14697688.2019.1579922 DOI: https://doi.org/10.1080/14697688.2019.1579922

Aksaraylı, M., & Pala, O. (2018). A polynomial goal programming model for portfolio optimization based on entropy and higher moments. Expert Systems with Applications, 94, 185–192. https://doi.org/10.1016/j.eswa.2017.10.056 DOI: https://doi.org/10.1016/j.eswa.2017.10.056

Assaf, A., Charif, H., & Demir, E. (2022). Information sharing among cryptocurrencies: Evidence from mutual information and approximate entropy during COVID-19. Finance Research Letters, 47, 102556. https://doi.org/10.1016/j.frl.2021.102556 DOI: https://doi.org/10.1016/j.frl.2021.102556

Ausloos, M. (1998). The Money Games Physicists Play. Europhysics News, 29(2), 70–72. https://doi.org/10.1007/s00770-998-0070-8 DOI: https://doi.org/10.1007/s00770-998-0070-8

BACKUS, D., CHERNOV, M., & ZIN, S. (2014). Sources of Entropy in Representative Agent Models. The Journal of Finance, 69(1), 51–99. https://doi.org/10.1111/jofi.12090 DOI: https://doi.org/10.1111/jofi.12090

Barbi, A. Q., & Prataviera, G. A. (2019). Nonlinear dependencies on Brazilian equity network from mutual information minimum spanning trees. Physica A: Statistical Mechanics and Its Applications, 523, 876–885. https://doi.org/10.1016/j.physa.2019.04.147 DOI: https://doi.org/10.1016/j.physa.2019.04.147

Becker, R., Clements, A. E., Doolan, M. B., & Hurn, A. S. (2015). Selecting volatility forecasting models for portfolio allocation purposes. International Journal of Forecasting, 31(3), 849–861. https://doi.org/10.1016/j.ijforecast.2013.11.007 DOI: https://doi.org/10.1016/j.ijforecast.2013.11.007

Behr, P., Guettler, A., & Miebs, F. (2013). On portfolio optimization: Imposing the right constraints. Journal of Banking & Finance, 37(4), 1232–1242. https://doi.org/10.1016/j.jbankfin.2012.11.020 DOI: https://doi.org/10.1016/j.jbankfin.2012.11.020

Best, M. J., & Grauer, R. R. (1992). The analytics of sensitivity analysis for mean-variance portfolio problems. International Review of Financial Analysis, 1(1), 17–37. https://doi.org/10.1016/1057-5219(92)90012-S DOI: https://doi.org/10.1016/1057-5219(92)90012-S

Bhaduri, S. N. (2014). Applying Approximate Entropy (ApEn) to Speculative Bubble in the Stock Market. Journal of Emerging Market Finance, 13(1), 43–68. https://doi.org/10.1177/0972652714534023 DOI: https://doi.org/10.1177/0972652714534023

Bhandari, D., & Pal, N. R. (1993). Some new information measures for fuzzy sets. Information Sciences, 67(3), 209–228. https://doi.org/10.1016/0020-0255(93)90073-U DOI: https://doi.org/10.1016/0020-0255(93)90073-U

Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81(3), 637–654. https://doi.org/10.1086/260062 DOI: https://doi.org/10.1086/260062

Bodnar, T., Mazur, S., & Okhrin, Y. (2017). Bayesian estimation of the global minimum variance portfolio. European Journal of Operational Research, 256(1), 292–307. https://doi.org/10.1016/j.ejor.2016.05.044 DOI: https://doi.org/10.1016/j.ejor.2016.05.044

Boltzmann, L. (1872). Boltzmann equation. Sitzungsber Akade Wissen, 66, 275–370.

Borup, D., Christensen, B. J., Mühlbach, N. S., & Nielsen, M. S. (2023). Targeting predictors in random forest regression. International Journal of Forecasting, 39(2), 841–868. https://doi.org/10.1016/j.ijforecast.2022.02.010 DOI: https://doi.org/10.1016/j.ijforecast.2022.02.010

Breuer, T., & Csiszár, I. (2013). Systematic stress tests with entropic plausibility constraints. Journal of Banking & Finance, 37(5), 1552–1559. https://doi.org/10.1016/j.jbankfin.2012.04.013 DOI: https://doi.org/10.1016/j.jbankfin.2012.04.013

Brissaud, J.-B. (2005). The meanings of entropy. Entropy, 7(1), 68–96. https://doi.org/10.3390/e7010068 DOI: https://doi.org/10.3390/e7010068

Brody, D. C., Buckley, I. R. C., Constantinou, I. C., & Meister, B. K. (2005). Entropic calibration revisited. Physics Letters A, 337(4–6), 257–264. https://doi.org/10.1016/j.physleta.2005.01.076 DOI: https://doi.org/10.1016/j.physleta.2005.01.076

Buchen, P. W., & Kelly, M. (1996). The Maximum Entropy Distribution of an Asset Inferred from Option Prices. The Journal of Financial and Quantitative Analysis, 31(1), 143. https://doi.org/10.2307/2331391 DOI: https://doi.org/10.2307/2331391

Caferra, R. (2022). Sentiment spillover and price dynamics: Information flow in the cryptocurrency and stock market. Physica A: Statistical Mechanics and Its Applications, 593, 126983. https://doi.org/10.1016/j.physa.2022.126983 DOI: https://doi.org/10.1016/j.physa.2022.126983

Campbell, J. Y., Lo, A. W., & MacKinlay, A. C. (1997). The Econometrics of Financial Markets. Princeton University Press. https://doi.org/10.1515/9781400830213 DOI: https://doi.org/10.1515/9781400830213

Campbell, J. Y., & Thompson, S. B. (2008). Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average? Review of Financial Studies, 21(4), 1509–1531. https://doi.org/10.1093/rfs/hhm055 DOI: https://doi.org/10.1093/rfs/hhm055

Carhart, M. M. (1997). On Persistence in Mutual Fund Performance. The Journal of Finance, 52(1), 57–82. https://doi.org/10.1111/j.1540-6261.1997.tb03808.x DOI: https://doi.org/10.1111/j.1540-6261.1997.tb03808.x

Carroll, A., O’Brien, F., & Ryan, J. (2017). An Examination of European Firms’ Derivatives Usage: The Importance of Model Selection. European Financial Management, 23(4), 648–690. https://doi.org/10.1111/eufm.12115 DOI: https://doi.org/10.1111/eufm.12115

Clausius, R. (1854). On the heat produced by an electric discharge: To the editors of the Philosophical Magazine and Journal. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 7(45), 297. DOI: https://doi.org/10.1080/14786445408647473

Cover, T. M., & Thomas, J. A. (2006). Elements of information theory second edition solutions to problems. Internet Access, 19–20.

Dacorogna, M. (1999). Econophysicists find a forum. Physics World, 12(9), 19–20. https://doi.org/10.1088/2058-7058/12/9/17 DOI: https://doi.org/10.1088/2058-7058/12/9/17

Daniel, K. D., Hirshleifer, D., & Subrahmanyam, A. (2001). Overconfidence, Arbitrage, and Equilibrium Asset Pricing. The Journal of Finance, 56(3), 921–965. https://doi.org/10.1111/0022-1082.00350 DOI: https://doi.org/10.1111/0022-1082.00350

Daniel, K., & Titman, S. (1999). Market Efficiency in an Irrational World. Financial Analysts Journal, 55(6), 28–40. https://doi.org/10.2469/faj.v55.n6.2312 DOI: https://doi.org/10.2469/faj.v55.n6.2312

De Luca, A., & Termini, S. (1972). A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory. Information and Control, 20(4), 301–312. https://doi.org/10.1016/S0019-9958(72)90199-4 DOI: https://doi.org/10.1016/S0019-9958(72)90199-4

Deng, Y. (2016). Deng entropy. Chaos, Solitons & Fractals, 91, 549–553. https://doi.org/10.1016/j.chaos.2016.07.014 DOI: https://doi.org/10.1016/j.chaos.2016.07.014

Dhifaoui, Z., Khalfaoui, R., Abedin, M. Z., & Shi, B. (2022). Quantifying information transfer among clean energy, carbon, oil, and precious metals: A novel transfer entropy-based approach. Finance Research Letters, 49, 103138. https://doi.org/10.1016/j.frl.2022.103138 DOI: https://doi.org/10.1016/j.frl.2022.103138

Dionisio, A., Menezes, R., & Mendes, D. A. (2006). An econophysics approach to analyse uncertainty in financial markets: an application to the Portuguese stock market. The European Physical Journal B - Condensed Matter and Complex Systems, 50(1–2), 161–164. https://doi.org/10.1140/epjb/e2006-00113-2 DOI: https://doi.org/10.1140/epjb/e2006-00113-2

Dolfsma, W., & Leydesdorff, L. (2008). ‘Medium-tech’ industries may be of greater importance to a local economy than ‘High-tech’ firms: New methods for measuring the knowledge base of an economic system. Medical Hypotheses, 71(3), 330–334. https://doi.org/10.1016/j.mehy.2008.04.021 DOI: https://doi.org/10.1016/j.mehy.2008.04.021

Fama, E. F. (1965). The Behavior of Stock-Market Prices. The Journal of Business, 38(1), 34. https://doi.org/10.1086/294743 DOI: https://doi.org/10.1086/294743

Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2), 383. https://doi.org/10.2307/2325486 DOI: https://doi.org/10.2307/2325486

Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33(1), 3–56. https://doi.org/10.1016/0304-405X(93)90023-5 DOI: https://doi.org/10.1016/0304-405X(93)90023-5

FAMA, E. F., & FRENCH, K. R. (1996). Multifactor Explanations of Asset Pricing Anomalies. The Journal of Finance, 51(1), 55–84. https://doi.org/10.1111/j.1540-6261.1996.tb05202.x DOI: https://doi.org/10.1111/j.1540-6261.1996.tb05202.x

Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. Journal of Financial Economics, 116(1), 1–22. https://doi.org/10.1016/j.jfineco.2014.10.010 DOI: https://doi.org/10.1016/j.jfineco.2014.10.010

Fard, F. A., Tchatoka, F. D., & Sriananthakumar, S. (2021). Maximum Entropy Evaluation of Asymptotic Hedging Error under a Generalised Jump-Diffusion Model. Journal of Risk and Financial Management, 14(3), 97. https://doi.org/10.3390/jrfm14030097 DOI: https://doi.org/10.3390/jrfm14030097

George, G., Merrill, R. K., & Schillebeeckx, S. J. D. (2021). Digital Sustainability and Entrepreneurship: How Digital Innovations Are Helping Tackle Climate Change and Sustainable Development. Entrepreneurship Theory and Practice, 45(5), 999–1027. https://doi.org/10.1177/1042258719899425 DOI: https://doi.org/10.1177/1042258719899425

Goldstein, S., Lebowitz, J. L., Tumulka, R., & Zanghì, N. (2020). Gibbs and Boltzmann Entropy in Classical and Quantum Mechanics. In Statistical Mechanics and Scientific Explanation (pp. 519–581). WORLD SCIENTIFIC. https://doi.org/10.1142/9789811211720_0014 DOI: https://doi.org/10.1142/9789811211720_0014

Gonçalves-Bradley, D. C., Lannin, N. A., Clemson, L., Cameron, I. D., & Shepperd, S. (2022). Discharge planning from hospital. Cochrane Database of Systematic Reviews, 2022(2). https://doi.org/10.1002/14651858.CD000313.pub6 DOI: https://doi.org/10.1002/14651858.CD000313.pub6

Gong, X., Min, L., & Yu, C. (2022). Multi-period portfolio selection under the coherent fuzzy environment with dynamic risk-tolerance and expected-return levels. Applied Soft Computing, 114, 108104. https://doi.org/10.1016/j.asoc.2021.108104 DOI: https://doi.org/10.1016/j.asoc.2021.108104

Grossman, S. J., & Stiglitz, J. E. (1980). On the Impossibility of Informationally Efficient Markets. The American Economic Review, 70(3), 393–408. http://www.jstor.org/stable/1805228

Gu, R., Chen, Q., & Zhang, Q. (2021). Portfolio Selection with respect to the Probabilistic Preference in Variable Risk Appetites: A Double-Hierarchy Analysis Method. Complexity, 2021, 1–14. https://doi.org/10.1155/2021/5512770 DOI: https://doi.org/10.1155/2021/5512770

Gulko, L. (1999). The entropy theory of stock option pricing. International Journal of Theoretical and Applied Finance, 02(03), 331–355. https://doi.org/10.1142/S0219024999000182 DOI: https://doi.org/10.1142/S0219024999000182

Gulko, L. (2002). The entropy theory of bond option pricing. International Journal of Theoretical and Applied Finance, 05(04), 355–383. https://doi.org/10.1142/S021902490200147X DOI: https://doi.org/10.1142/S021902490200147X

Gupta, P. (2022). Portfolio optimization using elliptic entropy and semi-entropy of coherent fuzzy numbers. Information Sciences, 614, 240–262. https://doi.org/10.1016/j.ins.2022.09.032 DOI: https://doi.org/10.1016/j.ins.2022.09.032

Hancock, P. A., Billings, D. R., Schaefer, K. E., Chen, J. Y. C., de Visser, E. J., & Parasuraman, R. (2011). A Meta-Analysis of Factors Affecting Trust in Human-Robot Interaction. Human Factors: The Journal of the Human Factors and Ergonomics Society, 53(5), 517–527. https://doi.org/10.1177/0018720811417254 DOI: https://doi.org/10.1177/0018720811417254

Hartley, R. V. L. (1928). Transmission of Information 1. Bell System Technical Journal, 7(3), 535–563. https://doi.org/10.1002/j.1538-7305.1928.tb01236.x DOI: https://doi.org/10.1002/j.1538-7305.1928.tb01236.x

Havrda, J., & Chárvat, F. (1967). Quantification method of classification processes. The concept of structural α-entropy, Kybernetika 3, 30.

Horta, P., Lagoa, S., & Martins, L. (2014). The impact of the 2008 and 2010 financial crises on the Hurst exponents of international stock markets: Implications for efficiency and contagion. International Review of Financial Analysis, 35, 140–153. https://doi.org/10.1016/j.irfa.2014.08.002 DOI: https://doi.org/10.1016/j.irfa.2014.08.002

Hübner, G., Lambert, M., & Papageorgiou, N. (2015). Higher-moment Risk Exposures in Hedge Funds. European Financial Management, 21(2), 236–264. https://doi.org/10.1111/eufm.12054 DOI: https://doi.org/10.1111/eufm.12054

Hunt, J., & Devolder, P. (2011). Semi-Markov regime switching interest rate models and minimal entropy measure. Physica A: Statistical Mechanics and Its Applications, 390(21–22), 3767–3781. https://doi.org/10.1016/j.physa.2011.04.036 DOI: https://doi.org/10.1016/j.physa.2011.04.036

Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review, 106(4), 620. DOI: https://doi.org/10.1103/PhysRev.106.620

Jensen, M. C. (1978). Some anomalous evidence regarding market efficiency. Journal of Financial Economics, 6(2–3), 95–101. https://doi.org/10.1016/0304-405X(78)90025-9 DOI: https://doi.org/10.1016/0304-405X(78)90025-9

Jizba, P., & Arimitsu, T. (2004). Observability of Rényi’s entropy. Physical Review E, 69(2), 026128. https://doi.org/10.1103/PhysRevE.69.026128 DOI: https://doi.org/10.1103/PhysRevE.69.026128

Knez, P. J., & Ready, M. J. (1997). On The Robustness of Size and Book‐to‐Market in Cross‐Sectional Regressions. The Journal of Finance, 52(4), 1355–1382. https://doi.org/10.1111/j.1540-6261.1997.tb01113.x DOI: https://doi.org/10.1111/j.1540-6261.1997.tb01113.x

Kosko, B. (1986). Fuzzy entropy and conditioning. Information Sciences, 40(2), 165–174. https://doi.org/10.1016/0020-0255(86)90006-X DOI: https://doi.org/10.1016/0020-0255(86)90006-X

Kothari, S. P., & Warner, J. B. (2001). Evaluating Mutual Fund Performance. The Journal of Finance, 56(5), 1985–2010. https://doi.org/10.1111/0022-1082.00397 DOI: https://doi.org/10.1111/0022-1082.00397

Kullback, S., & Leibler, R. A. (1951). On Information and Sufficiency. The Annals of Mathematical Statistics, 22(1), 79–86. http://www.jstor.org/stable/2236703 DOI: https://doi.org/10.1214/aoms/1177729694

Lo, A. W. (2004). The Adaptive Markets Hypothesis. The Journal of Portfolio Management, 30(5), 15–29. https://doi.org/10.3905/jpm.2004.442611 DOI: https://doi.org/10.3905/jpm.2004.442611

MacKay, D. J. C. (2003). Information theory, inference and learning algorithms. Cambridge university press.

MacLean, L., Yu, L., & Zhao, Y. (2022). A Generalized Entropy Approach to Portfolio Selection under a Hidden Markov Model. Journal of Risk and Financial Management, 15(8), 337. https://doi.org/10.3390/jrfm15080337 DOI: https://doi.org/10.3390/jrfm15080337

Mahmoud, I., & Naoui, K. (2017). Measuring systematic and specific risk: Approach mean-entropy. Asian Journal of Empirical Research, 7(3), 42–60. https://doi.org/10.18488/journal.1007/2017.7.3/1007.3.42.60 DOI: https://doi.org/10.18488/journal.1007/2017.7.3/1007.3.42.60

Mandelbrot, B. (1967). The Variation of Some Other Speculative Prices. The Journal of Business, 40(4), 393. https://doi.org/10.1086/295006 DOI: https://doi.org/10.1086/295006

Mandelbrot, B. B. (1971). When Can Price be Arbitraged Efficiently? A Limit to the Validity of the Random Walk and Martingale Models. The Review of Economics and Statistics, 53(3), 225. https://doi.org/10.2307/1937966 DOI: https://doi.org/10.2307/1937966

Mandelbrot, B. B., & Hudson, R. L. (2004). The (Mis) Behaviour of Markets: A Fractal View of Risk, Ruin and Reward, paperback. Profile Books, London, originally published by Basic Books, United States.

Markovitz, H. M. (1959). Portfolio selection: Efficient diversification of investments. John Wiley.

Markowitz, H. (1952). The Utility of Wealth. Journal of Political Economy, 60(2), 151–158. https://doi.org/10.1086/257177 DOI: https://doi.org/10.1086/257177

Mossin, J. (1966). Equilibrium in a Capital Asset Market. Econometrica, 34(4), 768. https://doi.org/10.2307/1910098 DOI: https://doi.org/10.2307/1910098

Neri, C., & Schneider, L. (2012). Maximum entropy distributions inferred from option portfolios on an asset. Finance and Stochastics, 16(2), 293–318. https://doi.org/10.1007/s00780-011-0167-7 DOI: https://doi.org/10.1007/s00780-011-0167-7

Oh, G., Kim, H., Ahn, S.-W., & Kwak, W. (2015). Analyzing the financial crisis using the entropy density function. Physica A: Statistical Mechanics and Its Applications, 419, 464–469. https://doi.org/10.1016/j.physa.2014.10.065 DOI: https://doi.org/10.1016/j.physa.2014.10.065

Oh, G., Kim, S., & Eom, C. (2007). Market efficiency in foreign exchange markets. Physica A: Statistical Mechanics and Its Applications, 382(1), 209–212. https://doi.org/10.1016/j.physa.2007.02.032 DOI: https://doi.org/10.1016/j.physa.2007.02.032

Ormos, M., & Zibriczky, D. (2014). Entropy-Based Financial Asset Pricing. PLoS ONE, 9(12), e115742. https://doi.org/10.1371/journal.pone.0115742 DOI: https://doi.org/10.1371/journal.pone.0115742

Owusu Junior, P., Frimpong, S., Adam, A. M., Agyei, S. K., Gyamfi, E. N., Agyapong, D., & Tweneboah, G. (2021). COVID-19 as Information Transmitter to Global Equity Markets: Evidence from CEEMDAN-Based Transfer Entropy Approach. Mathematical Problems in Engineering, 2021, 1–19. https://doi.org/10.1155/2021/8258778 DOI: https://doi.org/10.1155/2021/8258778

Patil, G. P., & Taillie, C. (1982). Diversity as a Concept and its Measurement. Journal of the American Statistical Association, 77(379), 548–561. https://doi.org/10.1080/01621459.1982.10477845 DOI: https://doi.org/10.1080/01621459.1982.10477845

Pincus, S., & Kalman, R. E. (2004). Irregularity, volatility, risk, and financial market time series. Proceedings of the National Academy of Sciences, 101(38), 13709–13714. https://doi.org/10.1073/pnas.0405168101 DOI: https://doi.org/10.1073/pnas.0405168101

Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences, 88(6), 2297–2301. DOI: https://doi.org/10.1073/pnas.88.6.2297

Pincus, S., & Singer, B. H. (1996). Randomness and degrees of irregularity. Proceedings of the National Academy of Sciences, 93(5), 2083–2088. https://doi.org/10.1073/pnas.93.5.2083 DOI: https://doi.org/10.1073/pnas.93.5.2083

Li, P., & Liu, B. (2008). Entropy of Credibility Distributions for Fuzzy Variables. IEEE Transactions on Fuzzy Systems, 16(1), 123–129. https://doi.org/10.1109/TFUZZ.2007.894975 DOI: https://doi.org/10.1109/TFUZZ.2007.894975

Piquet, V., Luczak, C., Seiler, F., Monaury, J., Martini, A., Ward, A. B., Gracies, J.-M., Motavasseli, D., Piquet, V., Luczak, C., Seiler, F., Monaury, J., Lépine, E., Chambard, L., Baude, M., Hutin, E., Martini, A., Samaniego, A., Bayle, N., … Motavasseli, D. (2021). Do Patients With COVID-19 Benefit from Rehabilitation? Functional Outcomes of the First 100 Patients in a COVID-19 Rehabilitation Unit. Archives of Physical Medicine and Rehabilitation, 102(6), 1067–1074. https://doi.org/10.1016/j.apmr.2021.01.069 DOI: https://doi.org/10.1016/j.apmr.2021.01.069

Rosenberg, B., Reid, K., & Lanstein, R. (1985). Persuasive evidence of market inefficiency. The Journal of Portfolio Management, 11(3), 9–16. https://doi.org/10.3905/jpm.1985.409007 DOI: https://doi.org/10.3905/jpm.1985.409007

Ross, S. A. (1976). Options and Efficiency. The Quarterly Journal of Economics, 90(1), 75. https://doi.org/10.2307/1886087 DOI: https://doi.org/10.2307/1886087

Ross, S. A. (1989). Information and Volatility: The No‐Arbitrage Martingale Approach to Timing and Resolution Irrelevancy. The Journal of Finance, 44(1), 1–17. https://doi.org/10.1111/j.1540-6261.1989.tb02401.x DOI: https://doi.org/10.1111/j.1540-6261.1989.tb02401.x

RUBINSTEIN, M. (1994). Implied Binomial Trees. The Journal of Finance, 49(3), 771–818. https://doi.org/10.1111/j.1540-6261.1994.tb00079.x DOI: https://doi.org/10.1111/j.1540-6261.1994.tb00079.x

Samuelson, P. A. (1973). Proof That Properly Discounted Present Values of Assets Vibrate Randomly. The Bell Journal of Economics and Management Science, 4(2), 369–374. https://doi.org/10.2307/3003046 DOI: https://doi.org/10.2307/3003046

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x DOI: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Sharpe, W. F. (1963). A Simplified Model for Portfolio Analysis. Management Science, 9(2), 277–293. https://doi.org/10.1287/mnsc.9.2.277 DOI: https://doi.org/10.1287/mnsc.9.2.277

Sharpe, W. F. (1964). Capital asset prices: a theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3), 425–442. https://doi.org/10.1111/j.1540-6261.1964.tb02865.x DOI: https://doi.org/10.1111/j.1540-6261.1964.tb02865.x

Sharpe, W. F. (1966). Security prices, risk, and maximal gains from diversification: reply. The Journal of Finance, 21(4), 743–744. https://doi.org/10.1111/j.1540-6261.1966.tb00280.x DOI: https://doi.org/10.1111/j.1540-6261.1966.tb00280.x

Smimou, K., Bector, C. R., & Jacoby, G. (2007). A subjective assessment of approximate probabilities with a portfolio application. Research in International Business and Finance, 21(2), 134–160. https://doi.org/10.1016/j.ribaf.2005.12.002 DOI: https://doi.org/10.1016/j.ribaf.2005.12.002

Sukpitak, J., & Hengpunya, V. (2016). Efficiency of Thai stock markets: Detrended fluctuation analysis. Physica A: Statistical Mechanics and Its Applications, 458, 204–209. https://doi.org/10.1016/j.physa.2016.03.076 DOI: https://doi.org/10.1016/j.physa.2016.03.076

Tabakis, E. (2000). Information and entropy in incomplete markets. International Journal of Theoretical and Applied Finance, 03(03), 561–561. https://doi.org/10.1142/S0219024900000589 DOI: https://doi.org/10.1142/S0219024900000589

Treynor, J. (1965). How to rate management of investment funds. Harvard Business Review, 63–75.

Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52, 479–487. DOI: https://doi.org/10.1007/BF01016429

Ünal, B. (2022). Causality Analysis for COVID-19 among Countries Using Effective Transfer Entropy. Entropy, 24(8), 1115. https://doi.org/10.3390/e24081115 DOI: https://doi.org/10.3390/e24081115

Usta, I., & Kantar, Y. M. (2011). Mean-Variance-Skewness-Entropy Measures: A Multi-Objective Approach for Portfolio Selection. Entropy, 13(1), 117–133. https://doi.org/10.3390/e13010117 DOI: https://doi.org/10.3390/e13010117

Wang, Z., & Shang, P. (2021). Generalized entropy plane based on multiscale weighted multivariate dispersion entropy for financial time series. Chaos, Solitons & Fractals, 142, 110473. https://doi.org/10.1016/j.chaos.2020.110473 DOI: https://doi.org/10.1016/j.chaos.2020.110473

Xiao, F. (2020). Generalization of Dempster–Shafer theory: A complex mass function. Applied Intelligence, 50(10), 3266–3275. https://doi.org/10.1007/s10489-019-01617-y DOI: https://doi.org/10.1007/s10489-019-01617-y

Xu, H., Dinev, T., Smith, J., & Hart, P. (2011). Information Privacy Concerns: Linking Individual Perceptions with Institutional Privacy Assurances. Journal of the Association for Information Systems, 12(12), 798–824. https://doi.org/10.17705/1jais.00281 DOI: https://doi.org/10.17705/1jais.00281

Yager, R. R. (2000). On the entropy of fuzzy measures. IEEE Transactions on Fuzzy Systems, 8(4), 453–461. https://doi.org/10.1109/91.868951 DOI: https://doi.org/10.1109/91.868951

Yu, J.-R., Lee, W.-Y., & Chiou, W.-J. P. (2014). Diversified portfolios with different entropy measures. Applied Mathematics and Computation, 241, 47–63. https://doi.org/10.1016/j.amc.2014.04.006 DOI: https://doi.org/10.1016/j.amc.2014.04.006

Zhao, S., Lin, Q., Ran, J., Musa, S. S., Yang, G., Wang, W., Lou, Y., Gao, D., Yang, L., He, D., & Wang, M. H. (2020). Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. International Journal of Infectious Diseases, 92, 214–217. https://doi.org/10.1016/j.ijid.2020.01.050 DOI: https://doi.org/10.1016/j.ijid.2020.01.050

Zhou, R., Cai, R., & Tong, G. (2013). Applications of Entropy in Finance: A Review. Entropy, 15(12), 4909–4931. https://doi.org/10.3390/e15114909 DOI: https://doi.org/10.3390/e15114909

Downloads

Published

21-05-2024

How to Cite

Chortane, S. G., & Naoui, K. . (2024). Information Entropy Theory and Asset Valuation: A Literature Survey. International Journal of Accounting, Business and Finance, 2(1), 42–60. https://doi.org/10.55429/ijabf.v2i1.95

Issue

Section

Research Articles